Размер:
AAA
Цвет: CCC
Изображения: Вкл.Выкл.
Обычная версия сайта

Search

Search:

Search by
Query string

Results:

Vol. 21 (2018 year), No. 1, DOI: 10.21443/1560-9278-2018-21-1

Mazukhina S. I., Pozhilenko V. I., Masloboev V. A., Sandimirov S. S., Gorbacheva T. T., Drogobuzhskaya S. V., Ivanov S. V.
The formation of the chemical composition of groundwater in South Prohibiny using the example of "Predgorny" water intake

Researchers from Russia and foreign countries, studying medical and environmental contamination of drinking water, point to the relationship of public health with chemical composition of groundwater and anthropogenic inclusions. The aim of the work is to detect the change in chemical composition of natural waters formed within the Khibiny massif and its closest framing depending on the composition of rocks in the catchment area and on anthropogenic impact by means of physical and chemical modeling and modern precision methods of analysis. To achieve the goal the sampling has been taken at the "Predgorny" water intake (Koashva, the Kirovsk district). The complete hydrochemical analysis has shown the presence in waters of such elements as uranium, molybdenum, silver, barium, which supplemented the database of groundwater chemical composition. For the physical-chemical modeling, there have been made some samples of chemical analyzes of the most common rocks composing the southeastern part of the Khibiny massif as the main catchment area. The analysis of the obtained results has made it possible to separate the rock influence from anthropogenic, natural chemical composition of waters from filtered mined (anthropogenic). It has been shown that already in natural (pure) waters the ratios of Ca/P and Ca/Sr can lead to bone diseases. It has been determined that the chemical composition of groundwater from the "Predgorny" water intake is affected by the chemical composition of rocks and surface waters containing oxygen, nitrogen nitrates, chlorine, which affect pH (reducing it), the migration patterns of aluminum, manganese, iron and other elements. In the bones of humans and animals, approximately 70 % falls on hydroxyl apatite Ca5(PO4)3OH. OH group can be replaced by F, Cl, O. Calcium can be isomorphically replaced by a number of elements: Sr, U, Ba, etc. that lead to diseases of bones and teeth. The research results can be useful in the fields of geochemistry, hydrology, ecology, and medicine

(in Russian, стр.10, fig. 6, tables. 2, ref 18, adobe PDF, adobe PDF 0 Kb)

Vol. 23 (2020 year), No. 2, DOI: 10.21443/1560-9278-2020-23-2

Mosendz I. A., Kremenetskaya I. P., Drogobuzhskaya S. V., Alekseeva S. A.
Sorption of heavy metals by the filtering containers with serpentine materials

The search for effective technologies for the remediation of technologically polluted natural objects is an urgent problem of environmental protection. At the experimental site near Kola MMC JSC (Murmansk region, Monchegorsk), experiments have been carried out on the use of mining waste to create phyto-adsorption sites in technologically polluted territories. During the experiments, filtering modules were used to study the processes of sorption/desorption of emission components with vermiculite-sungulite composition materials obtained by enriching phlogopite mining waste (Murmansk Region, Kovdor). To load two types of filtering modules designed to study open (I) and partially open (II) systems, the authors have used the initial and heat-treated granular sungulite, as well as slurry products (the content of sungulite and vermiculite was 30 %). As a control option, an experiment has been carried out using pure peat, selected in the vicinity of Apatity (Murmansk region). As a result of the study, the layer-by-layer content of the acid-soluble (or semi-gross) form of the components has been determined; the toxicity module has been calculated (the ratio of the total molar content of metals (Cu + Ni) and macronutrients (Ca + Mg)) used to assess the possible toxic effect of products in relation to plants. Pure peat has proved to possess the greatest sorption ability, however, at the end of the experiment, the highest degree of toxicity has been observed for peat; mineral products have been the least toxic. An analysis of the distribution of metals among the layers of filtering modules (II) has shown that intense accumulation of metals is observed in the upper layers; with increasing depth (layers 2–4) there is a gradual decrease in the copper content, in some products nickel is leached in the lower layers. The results of the study have shown that for loading phyto-adsorption sites it is advisable to use a granular sungulite product characterized by good sorption ability and low toxicity.

(in Russian, стр.7, fig. 6, tables. 1, ref 10, AdobePDF, AdobePDF 0 Kb)